I01: Knowledge Modelling and Interpretation
The project "Knowledge Modelling and Interpretation" aims to develop a semantic knowledge base that models experience-based knowledge of the different subprojects by means of therapy plans, operation workflows and medical background knowledge. The aim is to develop a contextually aware assistance in pre- and intraoperative scenarios via the integration of these different data sources and self-learning interpretation algorithms. The project provides a standard for modelling, interpreting and communicating the patient’s individual anatomy, pathology and therapy.
Project Leaders
Our Team
Publications
Fetzer A, Metzger J, Katic D, März K, Wagner M et al. "Toward an open-source semantic data infrastructure for integrating clinical and scientific data in cognition-guided surgery." SPIE Medical Imaging 2016 (accepted). |
Kaiser P, Lewis M, Petrick RPA, Asfour T and Steedman M. "Extracting Common Sense Knowledge from Text for Robot Planning." IEEE International Conference on Robotics and Automation (ICRA), (2014): 3749 – 56. doi:10.1109/ICRA.2014.6907402. |
Kämpgen B, März K, Hafezi M, Adler A, Philipp P et al. "Challenges in Collecting Patient Characteristics for Analysis using Linked Data." 13. Jahrestagung der Deutschen Gesellschaft für Computer- und Roboterassistierte Chirurgie (CURAC), (2014). |
Katić D, Wekerle AL, Goertler J, Spengler P, Bodenstedt S et al. “Context-aware Augmented Reality in laparoscopic surgery.” Comp. Med. Imag. and Graph., 37, no. 2, (2013): 174 – 82. doi:10.1016/j.compmedimag.2013.03.003. |
Katić D, Wekerle AL, Gaertner F, Kenngott HG, Müller-Stich BP et al. “Knowledge-Driven Formalization of Laparoscopic Surgeries for Rule-Based Intraoperative Context-Aware Assistance.” Proc. of Information Processing in Computer Assisted Interventions (IPCAI), (2014). doi:10.1007/978-3-319-07521-1_17. |
Katić D, Julliard C, Wekerle AL, Kenngott H, Müller-Stich BP et al. “LapOntoSPM - An Ontology for Laparoscopic Surgeries and its Application to Surgical Phase Recognition.” Int J CARS (2015). doi:10.1007/s11548-015-1222-1. |
Philipp P, Maleshkova M, Katic D, Weber C, Götz M et al. “Towards Cognitive Pipelines of Medical Assistance Algorithms.”, Int J CARS (to appear). |
Rettinger A, Schumilin A, Thoma S, and Ell B. “Learning a Cross-Lingual Semantic Representation of Relations Expressed in Text.” Proc. of the 12th Extended Semantic Web Confer-ence (ESWC 2015): 337-52. |
Schoch NJ, Philipp P, Weller T, Engelhardt S, Volovyk M et al. "Cognitive tools pipeline for assistance of mitral valve surgery." SPIE Medical Imaging (2016) (accepted). |
Staab S, Schnurr H-P, Studer R, Sure Y. „Knowledge Processes and Ontologies." In: IEEE Intelligent Systems 16(1): 26-34 (2001) |